Using the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)

نویسندگان

  • Abdollah Nazari Department of Management, Alborz College, University of Tehran, Tehran, Iran
  • Reza Tehrani Faculty of Management, University of Tehran, Tehran, Iran.
چکیده مقاله:

In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geographic area. Following[M1]  a linear programming optimization approach, this research employs the UTilités Additives DIScriminantes (UTADIS) model for credit scoring of bank customers. The advantages of the proposed technique are high flexibility, mutual interaction with decision makers, and the ability to update under various macroeconomic conditions. The chosen environment is a branch of Bank Refah Kargaran, one of the popular banks in Iran. According to the experimental results, the proposed technique demonstrates high effectiveness. Also, the results indicate that the initial credit score and age of the applicants are the most influential factors for credit scoring of customers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the study of practical and theoretical foundation of credit risk and its coverage

پس از بررسی هر کدام از فاکتورهای نوع صنعت, نوع ضمانت نامه, نرخ بهره , نرخ تورم, ریسک اعتباری کشورها, کارمزد, ریکاوری, gdp, پوشش و وثیقه بر ریسک اعتباری صندوق ضمانت صادرات ایران مشخص گردید که همه فاکتورها به استثنای ریسک اعتباری کشورها و کارمزد بقیه فاکتورها رابطه معناداری با ریسک اعتباری دارند در ضمن نرخ بهره , نرخ تورم, ریکاوری, و نوع صنعت و ریسک کشورها اثر عکس روی ریسک اعتباری داردو پوشش, وثی...

15 صفحه اول

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

hybrid credit scoring model using genetic algorithms and fuzzy expert systems case study: ghavvamin financial and credit institution

expert systems can help to build banks customers' credit scoring models. here, selection of key features of the credit scoring is important. also, it is possible to express the features values as fuzzy. the problem is how to improve features selection by genetic algorithm, in way that these features can be employed as input in fuzzy expert system. this paper presents a hybrid credit scorin...

متن کامل

Using DEA for Classification in Credit Scoring

Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...

متن کامل

Feature Selection in Credit Scoring Model for Credit Card Applicants in XYZ Bank: A Comparative Study

The performance of credit scoring models is determined by the used features. The relevant features for credit scoring usually are determined unsystematic and dominate by arbitrary trial. This paper presents a comparative study of four feature selection methods, which use data mining approach in reducing the feature space. The final results show that among the four feature selection methods, the...

متن کامل

Feature Selection in Big Data by Using the enhancement of Mahalanobis–Taguchi System; Case Study, Identifiying Bad Credit clients of a Private Bank of Islamic Republic of Iran

The Mahalanobis-Taguchi System (MTS) is a relatively new collection of methods proposed for diagnosis and forecasting using multivariate data. It consists of two main parts: Part 1, the selection of useful variables in order to reduce the complexity of multi-dimensional systems and part 2, diagnosis and prediction, which are used to predict the abnormal group according to the remaining us...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 2

صفحات  65- 78

تاریخ انتشار 2019-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023